Minggu, 26 Februari 2017

LINGKUNGAN PENGENDAPAN BATUBARA



                                LINGKUNGAN PENGENDAPAN BATUBARA


Batubara merupakan hasil dari akumulasi tumbuh-tumbuhan pada kondisi lingkungan pengendapan tertentu. Akumulasi tersebut telah dikenai pengaruh-pengaruh synsedimentary dan post-sedimentary. Akibat pengaruh-pengaruh tersebut dihasilkanlah batubara dengan tingkat (rank) dan kerumitan struktur yang bervariasi.
Lingkungan pengendapan batubara dapat mengontrol penyebaran lateral, ketebalan, komposisi, dan kualitas batubara. Untuk pembentukan suatu endapan yag berarti diperlukan suatu susunan pengendapan dimana terjadi produktifitas organik tinggi dan penimbunan secara perlahan-lahan namun terus menerus terjadi dalam kondisi reduksi tinggi dimana terdapat sirukulasi air yang cepat sehingga oksigen tidak ada dan zat organik dapat terawetkan. Kondisi demikian dapat terjadi diantaranya di lingkungan paralik (pantai) dan limnik (rawa-rawa).
Menurut Diessel (1984, op cit Susilawati ,1992) lebih dari 90% batubara di dunia terbentuk di lingkungan paralik yaitu rawa-rawa yang berdekatan dengan pantai. Daerah seperti ini dapat dijumpai di dataran pantai, lagunal, deltaik, atau juga fluviatil.
Diessel (1992) mengemukakan terdapat 6 lingkungan pengendapan utama pembentuk batubara (Tabel 2.1) yaitu gravelly braid plain, sandy braid plain, alluvial valley and upper delta plain, lower delta plain, backbarrier strand plain, dan estuary. Tiap lingkungan pengendapan mempunyai asosiasi dan menghasilkan karakter batubara yang berbeda.
Tabel 2.1
Lingkungan Pengendapan Pembentuk Batubara
(Diesel, 1992)
Environment
Subenvironment
Coal Characteristics
Gravelly braid plain
Bars, channel, overbank plains, swamps, raised bogs
mainly dull coals, medium to low TPI, low GI, low sulphur
Sandy braid plain
Bars, channel, overbank plains, swamp, raised bogs,
mainly dull coals, medium to high TPI, low to medium GI, low sulphur
Alluvial valley and upper delta plain
channels, point bars, floodplains and basins, swamp, fens, raised bogs
mainly bright coals, high TPI, medium to high GI, low sulphur
Lower delta plain
Delta front, mouth bar, splays, channel, swamps, fans and marshes
mainly bright coals, low to medium TPI, high to very high GI, high sulphur
Backbarrier strand plain
Off-, near-, and backshore, tidal inlets, lagoons, fens, swamp, and marshes
transgressive : mainly bright coals, medium TPI, high GI, high sulphur
regressive : mainly dull coals, low TPI and GI, low sulphur
Estuary
channels, tidal flats, fens and marshes
mainly bright coal with high GI and medium TPI
Proses pengendapan batubara pada umunya berasosiasi dengan lingkungan fluvial flood plain dan delta plain. Akumulasi dari endapan sungai (fluvial) di daerah pantai akan membentuk delta dengan mekanisme pengendapan progradasi (Allen & Chambers, 1998).
Lingkungan delta plain merupakan bagian dari kompleks pengendapan delta yang terletak di atas permukaan laut (subaerial). Fasies-fasies yang berkembang di lingkungan delta plain ialah endapan channel, levee, crevase, splay, flood plain, dan swamp. Masing-masing endapan tersebut dapat diketahui dari litologi dan struktur sedimen.
Endapan channel dicirikan oleh batupasir dengan struktur sedimen cross bedding, graded bedding, paralel lamination, dan cross lamination yang berupa laminasi karbonan. Kontak di bagian bawah berupa kontak erosional dan terdapat bagian deposit yang berupa fragmen-fragmen batubara dan plagioklas. Secara lateral endapan channel akan berubah secara berangsur menjadi endapan flood plain. Di antara channel dengan flood plain terdapat tanggul alam (natural levee) yang terbentuk ketika muatan sedimen melimpah dari channel. Endapan levee yang dicirikan oleh laminasi batupasir halus dan batulanau dengan struktur sedimen ripple lamination dan paralel lamination.
Pada saat terjadi banjir, channel utama akan memotong natural levee dan membentuk crevase play. Endapan crevase play dicirikan oleh batupasir halus – sedang dengan struktur sedimen cross bedding, ripple lamination, dan bioturbasi. Laminasi batupasir, batulanau, dan batulempung juga umum ditemukan. Ukuran butir berkurang semakin jauh dari channel utamanya dan umumnya memperlihatkan pola mengasar ke atas.
Endapan crevase play berubah secara berangsur ke arah lateral menjadi endapan flood plain. Endapan flood plain merupakan sedimen klastik halus yang diendapkan secara suspensi dari air limpahan banjir. Endapan flood plain dicirikan oleh batulanau, batulempung, dan batubara berlapis.
Endapan swamp merupakan jenis endapan yang paling banyak membawa batubara karena lingkungan pengendapannya yang terendam oleh air dimana lingkungan seperti ini sangat cocok untuk akumulasi gambut.
Tumbuhan pada sub-lingkungan upper delta plain akan didominasi oleh pohon-pohon keras dan akan menghasilkan batubara yang blocky. Sedangkan tumbuhan pada lower delta plai didominasi oleh tumbuhan nipah-nipah pohon yang menghasilkan batubara berlapis (Allen, 1985).




 

SKALA WAKTU GEOLOGI

Skala waktu geologi digunakan oleh para ahli geologi dan ilmuwan lain untuk menjelaskan waktu dan hubungan antar peristiwa yang terjadi sepanjang sejarah Bumi. Tabel periode geologi yang ditampilkan di halaman ini disesuaikan dengan waktu dan tatanama yang diusulkan oleh International Commission on Stratigraphy dan menggunakan standar kode warna dari United States Geological Survey.
Bukti-bukti dari penanggalan radiometri menunjukkan bahwa bumi berumur sekitar 4.570 juta tahun. Waktu geologi bumi disusun menjadi beberapa unit menurut peristiwa yang terjadi pada tiap periode. Masing-masing zaman pada skala waktu biasanya ditandai dengan peristiwa besar geologi atau paleontologi, seperti kepunahan massal. Sebagai contoh, batas antara zaman Kapur dan Paleogen didefinisikan dengan peristiwa kepunahan dinosaurus dan baerbagai spesies laut. Periode yang lebih tua, yang tak memiliki peninggalan fosil yang dapat diandalkan perkiraan usianya, didefinisikan dengan umur absolut.

Daftar isi

 

1. Rentang waktu

Rentang waktu kedua dan ketiga masing-masing merupakan subbagian dari garis waktu sebelumnya yang ditandai dengan atau tanda bintang (asterisk). Holosen (kala terakhir) terlalu kecil untuk dapat terlihat jelas pada garis waktu ini.

2. Peristilahan

Dalam bahasa Inggris, berturut-turut skala waktu geologi dari yang terbesar adalah eon, era, period, epoch, dan stage. Dalam bahasa Indonesia, eon kadang diterjemahkan menjadi masa, period diterjemahkan menjadi periode atau zaman, sedangkan epoch diterjemahkan menjadi kala.

3. Sejarah skala waktu

4. Tabel waktu geologi

Tabel berikut memberikan ringkasan peristiwa-peristiwa utama dan karakteristik pada periode waktu yang membentuk skala waktu geologi. Seperti diagram di atas, skala waktu ini didasarkan pada International Commission on Stratigraphy. Tinggi tiap baris tidak menggambarkan rentang waktu tiap subdivisi waktu.

Kala/Seri
Peristiwa utama
Mulai, juta
tahun yang lalu
Neogen
Akhir glasiasi dan kebangkitan peradaban manusia.
0.011430 ± 0.00013
Berkembangnya dan selanjutnya punahnya banyak mamalia besar (megafauna Pleistosen). Evolusi manusia modern secara anatomis. Awal Zaman Es terkini.
1.806 ± 0.005 *
Iklim dingin dan kering. Australopitheca; banyak mamalia dan moluska yang saat ini ada mulai muncul. Homo habilis muncul.
5.332 ± 0.005 *
Iklim moderat; Orogeny di belahan utara. Mamalia dan familia burung modern dikenali. Berbagai kuda dan mastodon berkembang. Rumput tumbuh di mana-mana. Kera pertama muncul.
23.03 ± 0.05 *
Iklim hangat; Evolusi dan diversifikasi pada fauna pesat, terutama mamalia. Evolusi dan penyebaran utama berbagai jenis tumbuhan berbunga modern.
33.9±0.1 *
Mamalia kuno (mis. Creodont, Condylarth, Uintatheriidae, dll) berkembang. Munculnya beberapa keluarga mamalia "modern". Paus primitif terdiversifikasi. Rumput pertama. Ice cap berkembang di Antarktika.
55.8±0.2 *
Iklim tropis. Tumbuhan modern muncul; Mamalia terdiversikasi menjadi beberapa garis keturunan primitif menyusul kepunahan dinosaurus. Mamalia besar pertama (sampai seukuran beruang atau kuda nil kecil).
65.5±0.3 *
Tumbuhan berbunga berkembang, bersama dengan jenis-jenis baru insekta. Ikan bertulang sejati (Teleostei) modern mulai bermunculan. Ammonita, Belemnoidea, Bivalvia rudist, Echinoidea dan Porifera umum ditemukan. Banyak jenis baru dinosaurus (mis. Tyrannosauridae, Titanosauridae, Hadrosauridae, dan Ceratopsidae) berkembang, juga Crocodilia modern; mosasaurus dan hiu modern muncul di laut. Burung primitif perlahan menggantikan pterosaurus. Mamalia monotremata, marsupialia and eutheria bermunculan. Gondwana terpecah.
99.6±0.9 *
145.5 ± 4.0
Gymnospermae (terutama tumbuhan runjung, Bennettitales dan sikas) dan paku-pakuan umum ditemukan. Banyak jenis dinosaurus, seperti sauropoda, carnosaurus, and stegosaurus. Mamalia kecil umum ditemukan. Burung pertama dan hewan melata bersisik (Squamata). Ichthyosaurus dan plesiosaurus berkembang. Bivalvia, ammonita dan Belemnoidea juga banyak dijumpai. Bulu babi sangat umum, juga lili laut, bintang laut, Porifera, Brachiopoda, Terebratulida, dan Rhynchonellida. Terpecahnya Pangaea menjadi Gondwana dan Laurasia.
161.2 ± 4.0
175.6 ± 2.0 *
199.6 ± 0.6
Dinosaurus mendominasi: Archosaurus di daratan, Ichthyosaurus dan Nothosaurus di lautan, dan Pterosaurus di udara. Cynodonta menjadi lebih kecil dan lebih menyerupai mamalia; mamalia dan crocodilia pertama muncul. Dicrodium merupakan flora umum di daratan. Banyak terdapat amfibi Temnospondylus . Ammonita sangat umum. Koral modern dan ikan bertulang sejati (Teleostei) muncul, dan juga banyak insekta.
228.0 ± 2.0
245.0 ± 1.5
251.0 ± 0.4 *
Daratan bergabung menjadi superbenua Pangaea, membentuk Pegunungan Appalachia. Akhir tahap glasial Permo-Carboniferous. Reptilia Synapsida (Pelycosaurus dan Therapsida) melimpah, sementara parareptilia dan [Amfibia Temnospondylia masih umum ditemukan. Pada zaman Perm pertengahan, flora zaman Karbon mulai digantikan oleh tumbuhan runjung (tumbuhan berbiji sejati pertama) dan tumbuhan lumut sejati pertama. Kumbang dan serangga bersayap dua berevolusi. Kehidupan laut berkembang di bagian terumbu dangkal yang hangat; Brachiopoda (Productida dan Spiriferida) , Bivalva, Foraminifera, dan amonit Orthocerida melimpah. Kepunahan massal antara Perm dan Trias terjadi 251 juta tahun yang lalu: 95 persen kehidupan di bumi pun, termasuk seluruh trilobita, graptolita, dan Blastoidea.
260.4 ± 0.7 *
270.6 ± 0.7 *
299.0 ± 0.8 *
Winged insects radiate suddenly; some (esp. Protodonata and Palaeodictyoptera) are quite large. Amphibians common and diverse. First reptiles and coal forests (scale trees, ferns, club trees, giant horsetails, Cordaites, etc.). Highest-ever oxygen levels. Goniatites, brachiopods, bryozoa, bivalves, and corals plentiful in the seas. Testate forams proliferate.
306.5 ± 1.0
311.7 ± 1.1
318.1 ± 1.3 *
Large primitive trees, first land vertebrates, and amphibious sea-scorpions live amid coal-forming coastal swamps. Lobe-finned rhizodonts are big fresh-water predators. In the oceans, early sharks are common and quite diverse; echinoderms (esp. crinoids and blastoids) abundant. Corals, bryozoa, goniatites and brachiopods (Productida, Spiriferida, etc.) very common. But trilobites and nautiloids decline. Glaciation in East Gondwana.
326.4 ± 1.6
345.3 ± 2.1
359.2 ± 2.5 *
First clubmosses, horsetails and ferns appear, as do the first seed-bearing plants (progymnosperms), first trees (the tree-fern Archaeopteris), and first (wingless) insects. Strophomenid and atrypid brachiopods, rugose and tabulate corals, and crinoids are all abundant in the oceans. Goniatite ammonoids are plentiful, while squid-like coleoids arise. Trilobites and armoured agnaths decline, while jawed fishes (placoderms, lobe-finned and ray-finned fish, and early sharks) rule the seas. First amphibians still aquatic. "Old Red Continent" of Euramerica.
385.3 ± 2.6 *
397.5 ± 2.7 *
416.0 ± 2.8 *
First vascular plants (the whisk ferns and their relatives), first millipedes and arthropleurids on land. First jawed fishes, as well as many armoured jawless fish, populate the seas. Sea-scorpions reach large size. Tabulate and rugose corals, brachiopods (Pentamerida, Rhynchonellida, etc.), and crinoids all abundant. Trilobites and mollusks diverse; graptolites not as varied.
418.7 ± 2.7 *
Atas/Akhir (Ludlow)
422.9 ± 2.5 *
428.2 ± 2.3 *
Bawah/Awal (Llandovery)
443.7 ± 1.5 *
Invertebrates diversify into many new types (e.g., long straight-shelled cephalopods). Early corals, articulate brachiopods (Orthida, Strophomenida, etc.), bivalves, nautiloids, trilobites, ostracods, bryozoa, many types of echinoderms (crinoids, cystoids, starfish, etc.), branched graptolites, and other taxa all common. Conodonts (early planktonic vertebrates) appear. First green plants and fungi on land. Ice age at end of period.
460.9 ± 1.6 *
471.8 ± 1.6
488.3 ± 1.7 *
Atas/Akhir (Furongian)
Major diversification of life in the Kambrium Explosion. Many fossils; most modern animal phyla appear. First chordates appear, along with a number of extinct, problematic phyla. Reef-building Archaeocyatha abundant; then vanish. Trilobites, priapulid worms, sponges, inarticulate brachiopods (unhinged lampshells), and many other animals numerous. Anomalocarids are giant predators, while many Ediacaran fauna die out. Prokaryotes, protists (e.g., forams), fungi and algae continue to present day. Gondwana emerges.
501.0 ± 2.0 *
513.0 ± 2.0
542.0 ± 0.3 *
Good fossils of multi-celled animals. Ediacaran fauna (or Vendobionta) flourish worldwide in seas. Trace fossils of worm-like Trichophycus, etc. First sponges and trilobitomorphs. Enigmatic forms include oval-shaped Dickinsonia, frond-shaped Charniodiscus, and many soft-jellied creatures.
630
+5/-30 *
Possible "snowball Earth" period. Fossils still rare. Rodinia landmass begins to break up.
850 [8]
Rodinia supercontinent persists. Trace fossils of simple multi-celled eukaryotes. First radiation of dinoflagellate-like acritarchs.
1000 [8]
Narrow highly metamorphic belts due to orogeny as supercontinent Rodinia is formed.
1200 [8]
Platform covers continue to expand. Green algae colonies in the seas.
1400 [8]
1600 [8]
First complex single-celled life: protists with nuclei. Columbia is the primordial supercontinent.
1800 [8]
The atmosphere became oxygenic. Vredefort and Sudbury Basin asteroid impacts. Much orogeny.
2050 [8]
Bushveld Formation occurs. Huronian glaciation.
2300 [8]
2500 [8]
Stabilization of most modern cratons; possible mantle overturn event.
2800 [8]
3200 [8]
First known oxygen-producing bacteria. Oldest definitive microfossils.
3600 [8]
Simple single-celled life (probably bacteria and perhaps archaea). Oldest probable microfossils.
3800
Pembentukan bumi (4570 jtl). Zircon, mineral tertua yang diketahui (4400 jtl).
c.4570

 

 

Tidak ada komentar:

Posting Komentar